

Certified Tester Test Automation Strategy Specialist (CT-TAS)

 v1.0 Page 1 2024/05/03

© International Software Testing Qualifications Board

Certified Tester

Test Automation Strategy

Syllabus

Version 1.0

International Software Testing Qualifications Board

Certified Tester Test Automation Strategy Specialist (CT-TAS)

 v1.0 Page 2 2024/05/03

© International Software Testing Qualifications Board

Copyright Notice

Copyright Notice © International Software Testing Qualifications Board (hereinafter called ISTQB®)

ISTQB® is a registered trademark of the International Software Testing Qualifications Board.

Copyright © 2024 the authors of the Test Automation Strategy v1.0 syllabus: Andrew Pollner (Chair),
Péter Földházi, Patrick Quilter, Gergely Ágnecz, László Szikszai

All rights reserved. The authors hereby transfer the copyright to the ISTQB®. The authors (as current
copyright holders) and ISTQB® (as the future copyright holder) have agreed to the following conditions of
use:

Extracts, for non-commercial use, from this document may be copied if the source is
acknowledged. Any Accredited Training Provider may use this syllabus as the basis for a training
course if the authors and the ISTQB® are acknowledged as the source and copyright owners of
the syllabus and provided that any advertisement of such a training course may mention the
syllabus only after official Accreditation of the training materials has been received from an
ISTQB®-recognized Member Board.

Any individual or group of individuals may use this syllabus as the basis for articles and books, if
the authors and the ISTQB® are acknowledged as the source and copyright owners of the
syllabus.

Any other use of this syllabus is prohibited without first obtaining the approval in writing of the
ISTQB®.

Any ISTQB®-recognized Member Board may translate this syllabus provided they reproduce the
above-mentioned Copyright Notice in the translated version of the syllabus.

Certified Tester Test Automation Strategy Specialist (CT-TAS)

 v1.0 Page 3 2024/05/03

© International Software Testing Qualifications Board

Revision History

Version Date Remarks

Syllabus
v1.0

2024/05/03 CT-TAS v1.0 GA Release

Certified Tester Test Automation Strategy Specialist (CT-TAS)

 v1.0 Page 4 2024/05/03

© International Software Testing Qualifications Board

Table of Contents

Copyright Notice .. 1

Revision History .. 3

Table of Contents .. 4

Acknowledgements ... 7

0 Introduction ... 8

0.1 Purpose of this Syllabus .. 8

0.2 Test Automation Strategy in Software Testing .. 8

0.3 Career Path for Testers and Test Automation Engineers ... 8

0.4 Business Outcomes ... 10

1 Introduction and Objectives for Test Automation Strategy – 45 minutes (K2) 15

1.1 Success Factors of a Test Automation Project.. 16

1.1.1 Define Goals & Objectives for a Test Automation Strategy .. 16

1.1.2 Identify Technical Success Factors of a Test Automation Project .. 16

1.1.3 Summarize Appropriate Investment Criteria in Selecting Candidate Projects for Test
Automation ... 17

2 Test Automation Resources – 60 minutes (K2) ... 18

2.1 Costs and Risks of Implementing a Test Automation Solution .. 19

2.1.1 Compare Alternative Technical Solutions with Regard to Cost of Ownership 19

2.1.2 Explain Licensing Model Considerations for Test Automation Tools 19

2.1.3 Provide Examples of Factors to be Considered When Defining a Test Automation Strategy ..
 ... 20

2.2 Roles and Responsibilities within Test Automation ... 21

2.2.1 Summarize the Roles and Skills Necessary for a Successful Test Automation Solution 21

3 Preparing for Test Automation – 225 minutes (K3) .. 22

3.1 Integration Across Test Levels .. 23

3.1.1 Differentiate Between Test Automation Distributions .. 23

3.1.2 Select a Test Automation Approach Based on the System Under Test Architecture 24

3.1.3 Demonstrate Ways to Optimize Test Automation Distribution to Achieve Shift Left and Shift
Right Approaches ... 24

3.2 Strategic Considerations in Different Software Development Lifecycle Models 25

Certified Tester Test Automation Strategy Specialist (CT-TAS)

 v1.0 Page 5 2024/05/03

© International Software Testing Qualifications Board

3.2.1 Explain How Test Automation Projects Conform with Legacy Software Development
Lifecycle Models ... 25

3.2.2 Explain How Test Automation Projects Conform with Agile Software Development Best
Practices that Support Test Automation ... 26

3.2.3 Prepare for Test Automation Projects to Conform with DevOps Best Practices to Achieve
Continuous Testing... 26

3.3 Applicability and Viability of Test Automation .. 26

3.3.1 Explain Criteria for Determining the Suitability of Tests for Test Automation 26

3.3.2 Identify Challenges that Only Test Automation Can Address ... 27

3.3.3 Identify Test Conditions that are Difficult to Automate .. 28

4 Organizational Deployment and Release Strategies for Test Automation – 135 minutes (K2) 29

4.1 Test Automation Solution Planning ... 30

4.1.1 Identify ways how test automation supports shorter time to market 30

4.1.2 Identify Ways in Which Test Automation Helps Verify Reported Defects 30

4.1.3 Define Approaches that Allow for the Development of Operationally Relevant Scenarios for
Test Automation ... 31

4.2 Test Automation Deployment Strategies ... 32

4.2.1 Define a Test Automation Deployment Strategy ... 32

4.2.2 Identify Test Automation Risks in Deployment .. 33

4.2.3 Define Approaches To Mitigate Deployment Risks ... 34

4.3 Dependencies within the Test Environment .. 34

4.3.1 Define test automation components in the test environment .. 34

4.3.2 Identify Infrastructure Components and Dependencies of Test Automation 35

4.3.3 Define Test Automation Data and Interface Requirements .. 36

5 Test Automation Impact Analysis – 150 minutes (K3) ... 37

5.1 Investment in Setting Up and Maintaining Test Automation .. 38

5.1.1 Show Return On Investment of Building a Test Automation Solution 38

5.2 Test Automation Metrics .. 39

5.2.1 Classify Metrics for Test Automation ... 39

5.3 The Value of Test Automation on the Project and Organization Level 40

5.3.1 Identify Organizational Considerations for Use of Test Automation ... 40

5.3.2 Analyze Project Characteristics that Help Determine Optimal Implementation of Test
Automation Test Objectives ... 41

5.4 Decisions Made from Test Automation Reports .. 43

Certified Tester Test Automation Strategy Specialist (CT-TAS)

 v1.0 Page 6 2024/05/03

© International Software Testing Qualifications Board

5.4.1 Analyze Test Report Data to Inform Decision Making .. 43

6 Implementation and Improvement Strategies for Testing Automation – 150 minutes (K3) 44

6.1 Transitioning Activities from Manual Testing to Continuous Testing ... 45

6.1.1 Describe the Factors and Planning Activities in Transitioning from Manual Testing to Test
Automation ... 45

6.1.2 Describe the Factors and Planning Activities in Transitioning from Test Automation to
Continuous Testing... 46

6.2 Test Automation Strategy Across the Organization .. 47

6.2.1 Conduct an Evaluation of the Test Automation Assets and Practices to Identify Improvement
Areas ... 47

7 References ... 49

8 Appendix A – Learning Objectives/Cognitive Level of Knowledge .. 52

10 Appendix C – Release Notes ... 58

11 Appendix D – Domain-Specific Terms ... 59

12 Index ... 60

Certified Tester Test Automation Strategy Specialist (CT-TAS)

 v1.0 Page 7 2024/05/03

© International Software Testing Qualifications Board

Acknowledgements

This document was formally released by the General Assembly of the ISTQB® on May 3, 2024.

It was produced by the Test Automation Task Force of the Specialist Working Group from the
International Software Testing Qualifications Board: Graham Bath (Specialist Working Group Chair)
Andrew Pollner (Specialist Working Group Vice Chair and Test Automation Task Force Chair), Péter
Földházi, Patrick Quilter, Gergely Ágnecz, László Szikszai. Test Automation Task Force reviewers
included: Armin Beer, Armin Born, Geza Bujdoso, Renzo Cerquozzi, Jan Giesen, Arnika Hryszko, Kari
Kakkonen, Gary Mogyorodi, Chris van Bael, Carsten Weise, Marc-Florian Wendland.

Technical Reviewer: Gary Mogyorodi

The following persons participated in the reviewing, commenting, and balloting of this syllabus:

Horváth Ágota, Laura Albert, Prasunkumar Banerjee, Jürgen Beniermann, Armin Born, Piet de Roo, Nicola
De Rosa, Dingguofu Ding Guofu, Elizabeta Fourneret, Jan Giesen, Erik Haartmans, Matthias Hamburg,
Tobias Horn, Mattijs Kemmink, Ilia Kulakov, Ashish Kumar, Vincenzo Marrazzo, Marton Matyas, Patricia
McQuaid, Smitha Mohandas, Ingvar Nordström, Sreeja Padmakumari, Nishan Portoyan, Meile Posthuma,
Swapnil Shah, Péter Sótér, Szilard Szell, Richard Taylor, Giancarlo Tomasig, Chris Van Bael, Daniel Van
der Zwan, Carsten Weise, Marc-Florian Wendland, Claude Zhang.

Certified Tester Test Automation Strategy Specialist (CT-TAS)

 v1.0 Page 8 2024/05/03

© International Software Testing Qualifications Board

0 Introduction

0.1 Purpose of this Syllabus

This syllabus forms the basis for the International Software Testing Qualification for the Test Automation
Strategy Specialist qualification. The ISTQB® provides this syllabus as follows:

1. To member boards, to translate into their local language and to accredit training providers.
Member boards may adapt the syllabus to their particular language needs and modify the
references to adapt to their local publications.

2. To certification bodies, to derive examination questions in their local language adapted to the
learning objectives for this syllabus.

3. To training providers, to produce courseware and determine appropriate teaching methods.

4. To certification candidates, to prepare for the certification exam (either as part of a training course
or independently).

5. To the international software and systems engineering community, to advance the profession of
software and systems testing, and as a basis for books and articles.

0.2 Test Automation Strategy in Software Testing

The Test Automation Strategy Specialist qualification is aimed at anyone involved in software testing and
test automation. This includes people in roles such as testers, test analysts, test automation engineers,
test consultants, test architects, test managers, and software developers. This Specialist qualification is
also appropriate for anyone who wants a basic understanding of test automation, such as project
managers, quality managers, software development managers, business analysts, IT directors and
management consultants.

The Specialist Test Automation Strategy (CT-TAS) syllabus presents multiple factors that come into play
when planning for test automation within an organization. Technical engineering implementation aspects
of test automation methods and best practices are not in scope as they are covered in the separate ISTQB
CTAL-TAE syllabus.

The Test Automation Strategy addresses test automation needs beyond those that are technical tool
implementation and integration challenges. A strategic view of test automation provides a vision of
implementation across projects within an organization in a systematic and consistent manner that ultimately
demonstrates value to the organization.

0.3 Career Path for Testers and Test Automation Engineers

The ISTQB® scheme provides support for testing professionals at all stages of their careers offering both

breadth and depth of knowledge. Individuals who achieve the ISTQB® Test Automation Strategy

Certified Tester Test Automation Strategy Specialist (CT-TAS)

 v1.0 Page 9 2024/05/03

© International Software Testing Qualifications Board

Specialist certification may also be interested in the Test Automation Engineering (CTAL-TAE)

qualification.

Individuals who achieve the ISTQB® Certified Tester Test Automation Strategy Specialist certification may

also be interested in the Core Advanced Levels (Test Analyst, Technical Test Analyst, and Test Manager)

and thereafter Expert Level (Test Management or Improving the Test Process). Anyone seeking to

develop skills in testing practices in an Agile environment area could consider the Agile Technical Tester

or Agile Test Leadership at Scale certifications. The Specialist stream offers a deep dive into areas that

have specific test approaches and test activities e.g., in Test Automation Engineering, Performance

Testing, Security Testing, AI Testing, and Mobile Application Testing, or where domain specific know-how

is required (e.g., Automotive Software Testing or Game Testing). Please visit www.istqb.org for the latest
information of ISTQB´s Certified Tester Scheme.

https://eur01.safelinks.protection.outlook.com/?url=http%3A%2F%2Fwww.istqb.org%2F&data=05%7C01%7Cfilipe.carlos%40innowave.tech%7Cb1ee83ff6521424c792908da440ce915%7C726174dc30ab40e185fc60cda0e0bd81%7C0%7C0%7C637897119663377885%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=Sgv6mR7KzlIIQ6MFZ0cBRVv6yEoTekNJEqwFQ7M%2Bx7M%3D&reserved=0

Certified Tester Test Automation Strategy Specialist (CT-TAS)

 v1.0 Page 10 2024/05/03

© International Software Testing Qualifications Board

0.4 Business Outcomes

This section lists the Business Outcomes expected of a candidate who has achieved the Test Automation
Strategy Specialist certification.

A Certified Tester Test Automation Strategy Specialist can…

TAS-B01
Understand factors from software and systems that influence the success of
test automation

TAS-B02 Identify costs and risks of implementing a test automation solution

TAS-B03 Understand the roles and responsibilities of people who are contributing to test automation

TAS-B04 Plan for the integration of test automation across test levels

TAS-B05
Identify strategic considerations for test automation implementation in different software
development lifecycle models

TAS-B06 Understand applicability and viability of test automation

TAS-B07 Plan test automation solutions that meet the organizational needs

TAS-B08 Understand test automation deployment strategies

TAS-B09 Understand test automation dependencies within the test environment

TAS-B10 Understand costs for setting up and maintaining test automation

TAS-B11 Learn which test automation metrics help drive decision-making

TAS-B12 Identify ways in which test automation brings value to the project and organization

TAS-B13 Identify test automation reporting requirements to address stakeholder needs

TAS-B14 Define transitioning activities from manual testing to test automation

TAS-B15
Define a test automation strategy that ensures projects share assets and methods to
ensure consistent implementation across the organization

Certified Tester Test Automation Strategy Specialist (CT-TAS)

 v1.0 Page 11 2024/05/03

© International Software Testing Qualifications Board

0.5 Examinable Learning Objectives and Cognitive Level of Knowledge

Learning objectives support business outcomes and are used to create the Certified Tester Test
Automation Strategy Specialist exams.

In general, all contents of this syllabus are examinable at a K2 and K3 levels, except for the Introduction
and Appendices. That is, the candidate may be asked to recognize, remember, or recall a keyword or
concept mentioned in any of the six chapters. The specific learning objectives levels are shown at the
beginning of each chapter, and classified as follows:

● K2: Understand

● K3: Apply

Further details and examples of learning objectives are given in Appendix A.

All terms listed as keywords just below chapter headings shall be remembered, even if not explicitly
mentioned in the learning objectives.

0.6 The Test Automation Strategy Specialist Certificate Exam

The Test Automation Strategy Specialist Certificate exam will be based on this syllabus. Answers to exam
questions may require the use of material based on more than one section of this syllabus. All sections of
the syllabus are examinable, except for the Introduction and Appendices. Standards and books are
included as references, but their content is not examinable, beyond what is summarized in the syllabus
itself from such standards and books.

Refer to the Exam Structures and Rules v1.1 Compatible with Syllabus Foundation and Advanced Levels
and Specialist Modules document for further details regarding the Test Automation Strategy Syllabus
Certificate exam.

The entry criterion for taking the Test Automation Strategy certification exam is that candidates have an
interest in software testing and test automation. However, it is strongly recommended that candidates
also:

● Have at least a minimal background in software and systems development and leadership for
implementation of technology into the enterprise and experience as a senior test engineer, test
lead or as a software developer

● Take a course that has been accredited to ISTQB standards (by one of the ISTQB-recognized
member boards).

Entry Requirement Note: The ISTQB® Foundation Level certificate shall be obtained before taking the
Test Automation Strategy Syllabus Specialist certification exam.

Certified Tester Test Automation Strategy Specialist (CT-TAS)

 v1.0 Page 12 2024/05/03

© International Software Testing Qualifications Board

0.7 Accreditation

An ISTQB® Member Board may accredit training providers whose course material follows this syllabus.
Training providers should obtain accreditation guidelines from the Member Board or body that performs
the accreditation. An accredited course is recognized as conforming to this syllabus and is allowed to
have an ISTQB® exam as part of the course.

The accreditation guidelines for this syllabus follow the general Accreditation Guidelines published by the
Processes Management and Compliance Working Group.

0.8 Handling of Standards

There are standards referenced in the Test Automation Strategy Syllabus (e.g., IEEE, ISO, etc.). The
purpose of these references is to provide a framework (as in the references to ISO 25010 regarding
quality characteristics) or to provide a source of additional information if desired by the reader. Please
note that the syllabus uses the standard documents as reference. The standards documents are not
intended for examination. Refer to Chapter 7 References for more information on Standards.

0.9 Keeping It Current

The software industry changes rapidly. To deal with these changes and to provide the stakeholders with
access to relevant and current information, the ISTQB working groups have created links on the
www.istqb.org website, which refer to supporting documents and changes to standards. This information
is not examinable under the Test Automation Strategy Specialist syllabus.

0.10 Level of Detail

The level of detail in this syllabus allows internationally consistent courses and exams. To achieve this
goal, the syllabus consists of:

● General instructional objectives describing the intention of the Test Automation Strategy
Specialist

● A list of terms that students must be able to recall

● Learning objectives for each knowledge area, describing the cognitive learning outcome to be
achieved

● A description of the key concepts, including references to sources such as accepted literature or
standards

The syllabus content is not a description of the entire knowledge area of software testing; it reflects the
level of detail to be covered in Test Automation Strategy Specialist training courses. It focuses on test
concepts and techniques that can apply to all software projects, including those following Agile methods.
This syllabus does not contain any specific learning objectives related to Agile testing, but it does discuss
how these concepts apply in Agile projects and other types of projects.

Certified Tester Test Automation Strategy Specialist (CT-TAS)

 v1.0 Page 13 2024/05/03

© International Software Testing Qualifications Board

0.11 How this Syllabus is Organized

There are six chapters with examinable content. The top-level heading for each chapter specifies the time
for the chapter; timing is not provided below chapter level. For accredited training courses, the syllabus
requires a minimum of 12.75 hours of instruction, distributed across the six chapters as follows:

● Chapter 1: 45 minutes – Introduction and Objectives for Test Automation Strategy

o The tester understands the concepts of test automation and learns the selection criteria

for candidate projects

o The tester understands the factors that define a successful test automation

implementation

● Chapter 2: 60 minutes – Test Automation Resources

o The tester learns the different solutions that are available for test automation and the

relative investment for each

o Software licensing for test automation tools is covered

o The testers understand the skills needed for test automation

● Chapter 3: 225 minutes – Preparing for Test Automation

o The tester learns how test automation is used across and within test levels

o Test automation strategies to adequately distribute testing and achieve shift left and shift

right are covered

o The tester learns how test automation supports legacy and Agile projects

o Test automation within DevOps and continuous testing practices is covered

o The tester understands how to define criteria for use of test automation, including tests

most suitable for test automation

● Chapter 4: 135 minutes – Organizational Deployment and Release Strategies for Test
Automation

o The tester learns how test automation can improve time to market

o The tester understands how to develop operationally relevant automated tests and

reporting of defects

o Test automation deployment strategy and risk mitigation is covered

o The tester learns about the test automation environment and its dependencies

o Integration of test automation and test data to a system under test is covered

Certified Tester Test Automation Strategy Specialist (CT-TAS)

 v1.0 Page 14 2024/05/03

© International Software Testing Qualifications Board

● Chapter 5: 150 minutes – Test Automation Impact Analysis

o Test automation metrics and reporting to help inform decisions is covered

o A tester learns how to perform a return on investment for test automation

o Objectives for an organization and a project to use test automation is covered

o The tester learns how to analyze test reports and inform decision makers in a clear and

understandable way

● Chapter 6: 150 minutes – Implementation and Improvement Strategies for Test Automation

o The tester learns how to transition from manual to test automation and to continuous

testing

o Evaluating test automation for continuous improvement is covered

Certified Tester Test Automation Strategy Specialist (CT-TAS)

 v1.0 Page 15 2024/05/03

© International Software Testing Qualifications Board

1 Introduction and Objectives for Test Automation Strategy
– 45 minutes (K2)

Keywords

test automation architecture, test automation framework, test automation strategy

Learning Objectives for Chapter 1:

1.1 Success Factors of a Test Automation Project

CT-TAS-1.1.1 (K2) Explain the objectives and relevance of test automation

CT-TAS-1.1.2 (K2) Identify technical success factors of a test automation project

CT-TAS-1.1.3 (K2) Summarize appropriate investment criteria in selecting candidate projects for test
automation

Certified Tester Test Automation Strategy Specialist (CT-TAS)

 v1.0 Page 16 2024/05/03

© International Software Testing Qualifications Board

1.1 Success Factors of a Test Automation Project

1.1.1 Define Goals & Objectives for a Test Automation Strategy

When defining the strategy of a test automation project, the following need to be addressed:

● Defining the intended purpose
● Identifying risks
● Defining the scope
● Identifying the stakeholders involved
● Selecting the tools for automation
● Designing the test automation architecture (TAA)
● Identifying environments

Objectives of test automation may include:

● Improved test efficiency
● Broader and deeper coverage provided
● Improved overall quality of the SUT
● Reduced total cost and time to market
● Performed tests that manual testers cannot do
● Reduced test execution time
● Increased test frequency

Since Agile software development provides faster deployment cycles, and cloud applications are more
widespread, development requires earlier and quicker feedback about the quality of the SUT. As a result
of this shift, test automation has more focus and relevance in modern projects, given its nature and test
objectives.

1.1.2 Identify Technical Success Factors of a Test Automation Project

The following success factors apply to test automation projects that focus on factors that impact the long-
term success of a project. The use of a pilot project helps determine the tools and viability of selected
technologies.

Success factors for test automation include the following:

● SUT testability
○ Enables test automation to access SUT interfaces

● Defined test automation strategy
○ The strategy needs to be applicable and customizable; its goals need to be achievable

within time and cost constraints, and it needs to be kept up-to-date
● TAA

○ Clarity of what and how to implement
○ For additional information, see the CTAL-TAE Syllabus, section 3.1.1

Certified Tester Test Automation Strategy Specialist (CT-TAS)

 v1.0 Page 17 2024/05/03

© International Software Testing Qualifications Board

● Test automation framework (TAF)
○ TAF that is easy to use, well documented and maintainable, supports a consistent

approach to automating tests. For additional information, see the CTAL-TAE Syllabus,
section 3.1.3.

○ Defined and implemented test reporting
○ Easy troubleshooting
○ Appropriate test environment
○ Documented automated test cases
○ Traceable automated tests to test case definitions and requirements
○ Easy maintenance
○ Up-to-date automated tests
○ A clear deployment plan
○ A clear test execution plan
○ Tests retired as needed
○ Effective exception handling

Before starting the test automation project, it is important to analyze the chance of success for the project
by considering the factors in place and the factors missing, keeping risks of the chosen test approach in
mind as well as the project context. Not all factors are required, and in practice, rarely are all factors met.

1.1.3 Summarize Appropriate Investment Criteria in Selecting Candidate Projects for
Test Automation

Setting up test automation on a project means investment and, in most cases, significant cost. This should
be taken into consideration, together with the nature of the project, and whether test automation should be
used on the project.

Consider the following investment criteria before introducing test automation:

● Cost of introduction: Besides the work needed to set up test automation, additional costs will be
required for the project as there may be a need to hire new test automation engineers (TAEs), buy
new hardware, or set up training

● Current phase in the project’s software development lifecycle (SDLC): It is better to start as early
as possible so that test automation can bring more value sooner

● Expected/planned duration of the project/software development: For a shorter project, there may
not be enough resources to start, or time left for test automation to bring value

● Maintenance cost: In the case of starting from scratch, setting up a test automation solution (TAS)
will take time along with the need to be maintained

If the investment of introducing test automation on a project is acceptable, preparation for test automation
can begin. This includes selecting the right test approach and test automation tools. The primary
responsibility for this process is a strategic role of a test architect or test manager, who has the necessary
test automation knowledge to make relevant decisions.

Certified Tester Test Automation Strategy Specialist (CT-TAS)

 v1.0 Page 18 2024/05/03

© International Software Testing Qualifications Board

2 Test Automation Resources – 60 minutes (K2)

Keywords

test automation engineer, test automation solution

Learning Objectives for Chapter 2:

2.1 Costs and Risks of Implementing a Test Automation Solution

CT-TAS-2.1.1 (K2) Compare alternative technical solutions with regard to cost of ownership

CT-TAS-2.1.2 (K2) Explain licensing model considerations for test automation tools

CT-TAS-2.1.3 (K2) Provide examples of factors to be considered when defining a test automation
strategy

2.2 Roles and Responsibilities within Test Automation

CT-TAS-2.2.1 (K2) Summarize the roles and skills necessary for a successful test automation solution

Certified Tester Test Automation Strategy Specialist (CT-TAS)

 v1.0 Page 19 2024/05/03

© International Software Testing Qualifications Board

2.1 Costs and Risks of Implementing a Test Automation Solution

2.1.1 Compare Alternative Technical Solutions with Regard to Cost of Ownership

In terms of ownership, a common approach is a customized in-house solution based on open-source or

commercial tools. Other alternative approaches include non-customizable commercial solutions or signing

a contract with an outsource company to get the work done by the TAE.

Creating all the TAS in-house ensures that all costs, resources, risks, and governance are within the

organization (e.g., team members/developers, and hardware and software resources that are necessary

for the actual solution). A key factor is that, by following this approach and allocating time to this activity,

the TAS can be developed without a need for a contract with a vendor or outsource company, as every

required TAE and their knowledge is available within the organization. However, to carry it out successfully,

the organization needs to have the right TAEs, hired or trained, who can drive the development of the TAS.

Working with a vendor-based solution, ownership will be shared between the client and the vendor

depending on the details of their contract. If there is already a test tool in the organization that has already

been piloted and meets all the requirements, and there is no need for additional features in the test tool,

this approach will be easier to adopt. The testers within the organization will be able to work productively

once receiving the necessary training from the vendor, and usually there will be subject matter experts

(SMEs) assigned as product owners inside the organization. The risk with this approach is that if any

additional work needs to be done (e.g., fix tool defects, and additional feature requests) to the test tool, it

will take time and require negotiations with the vendor to get it done on time and done in the right way,

which can affect the work of the testers who are working with this test tool.

If the organization does not want to have the ownership of setting up a team, outsourcing is a recommended

solution. In the case of working with outsource companies, the client does not have to hire or buy any actual

hardware, software, or recruit employees with the required skill set. All the work and additional costs will be

with the outsource company along with the ownership of the tools as well. Measurable expectations and

metrics must be defined in the contract to make the progress transparent and visible. This approach is

suggested in case the organization does not plan to invest efforts into hiring TAEs due to short project

timelines, costs, or other considerations.

2.1.2 Explain Licensing Model Considerations for Test Automation Tools

Licensing is an important aspect to consider when test automation is established. Each licensing model

mentioned below has a different impact on usability and cost factors e.g., costs of test execution, and

difficulty to set up the development environment.

Licensing models include:

● Open-source: In many cases, organizations are using open-source tools to achieve their test

objectives in test automation. The main reason for this is that there are no license costs or any

maintenance fees for the use of the test tools. Many users and organizations contribute towards

the development of open-source tools which makes information gathering and receiving support

easier. Most open-source licenses also allow people to modify the tools if necessary or even

republish them without significant restrictions.

Certified Tester Test Automation Strategy Specialist (CT-TAS)

 v1.0 Page 20 2024/05/03

© International Software Testing Qualifications Board

● License per user/machine: Commercial tools often have licensing per user(s) or machine(s). In

terms of costs, tools can be used efficiently when the organization knows the number of TAEs

who will work on a given project for the long term. Often, the more licenses an organization

orders, the better the pricing they receive.

● Floating license: This is a license that can be shared between multiple people in the

organization to be used at different times. It can be very useful when there are many TAEs who

work on different machines. The number of licenses is calculated based on concurrent use, not

total number of TAEs or specific machines on which they run their tests.

● Runtime license: Many commercial tools have runtime licenses for executing test automation.

This type of license occurs with cloud vendors that host test automation tools, multiple operating

systems (OSs), and browser versions as a service. There are also cloud vendors that provide

access to device farms that have a variety of mobile devices, platforms, versions, and cellular

networks. Those that utilize these services are only charged for the time they use to execute

tests, and therefore are charged on a runtime license basis.

2.1.3 Provide Examples of Factors to be Considered When Defining a Test Automation
Strategy

Many factors can influence decisions about test automation implementation and its strategy.

The most crucial factors are:

● Time constraints

● Needed level of expertise and number of TAEs to develop the TAS

● Test hardware

● Test tool licenses

● Adaptability

● Maintenance

● Support for different platforms (e.g., Web, desktop and/or mobile)

● Continuous integration/continuous delivery (CI/CD) support

● Test management integration and test reporting

The first and most important cost factor is the timeline for the work that must be done and for the test

automation itself.

From a timing perspective, if the deadline is short, an approach often used is to hire only a few skilled TAEs

to create the TAS. In terms of a longer roadmap and schedule, the organization can decide on the number

of required TAEs with more context. When the SUT grows, improves, and becomes more complex, a

decision can be made to hire more TAEs to implement and maintain the TAS and the tests.

Other important cost factors are the tools and their licenses. The budget should contain the required test

tools, hardware, and additional training for the TAEs. These factors have a strong connection to the

integration to other tools and systems to do any additional non-testing functions like uploading test results

to the test management system or triggering a build to the configuration management system. For these

additional functions there are tools, either free or with fees, and libraries to use, but these must be

considered during the creation of the test automation strategy and should be included in the budget.

Certified Tester Test Automation Strategy Specialist (CT-TAS)

 v1.0 Page 21 2024/05/03

© International Software Testing Qualifications Board

It is always context dependent as to how many test environments and agents a development team has.

The larger and more complex the SUT and release schedule is, the more resources the organization will

require, which will increase the cost as well. A recent approach to limit resource costs use cloud providers

and pay for on demand test hardware resources and runtime licenses which must be used carefully as it

can backfire. Sometimes machines can be left running and become more expensive than on their own

hardware. This approach can reduce the high costs of maintenance and operation for the TAE team.

2.2 Roles and Responsibilities within Test Automation

2.2.1 Summarize the Roles and Skills Necessary for a Successful Test Automation
Solution

For a successful TAS, organizations require skilled TAEs who should have strong programming and

technical architecture knowledge.

Depending on the size and maturity of the project, there should also be at least one strong SME (e.g., a
test lead, architect, and business analyst) who understands the actual business domain and the test
objectives. The role of this person is to help drive and create the concept, based on test objectives, and a
roadmap for the actual TAS. Team management and soft skills will be needed to train, motivate, and build
the team for the actual work. [CTEL-TM-MTT]

A TAE should have strong technical skills and knowledge about different SDLCs, and about the architecture

of the SUT and its development environment. Apart from the technical aspects, a TAE should have the

ability to cooperate with test analysts and other stakeholders about the objectives of test automation. Since

exhaustive testing is not achievable, the same applies for test automation: 100% test automation coverage

is not achievable. As time and effort are limited, the TAEs need to be able to prioritize the most impactful

test conditions to cover from a business and investment perspective by contributing to risk assessments.

Certified Tester Test Automation Strategy Specialist (CT-TAS)

 v1.0 Page 22 2024/05/03

© International Software Testing Qualifications Board

3 Preparing for Test Automation – 225 minutes (K3)

Keywords

API testing, component testing, contract testing, shift left, shift right, system under test, test automation
approach, test condition, test double, test level, test pyramid

Learning Objectives for Chapter 3:

3.1 Integration Across Test Levels

CT-TAS-3.1.1 (K2) Differentiate between test automation distributions

CT-TAS-3.1.2 (K2) Select a test automation approach based on the system under test architecture

CT-TAS-3.1.3 (K3) Demonstrate ways to optimize test automation distribution to achieve shift left and
shift right approaches

3.2 Strategic Considerations in Different Software Development Software Development Lifecycle
Models

CT-TAS-3.2.1 (K2) Explain how test automation projects conform with legacy software development
lifecycle models

CT-TAS-3.2.2 (K2) Explain how test automation projects conform with Agile software development best
practices that support test automation

CT-TAS-3.2.3 (K3) Prepare for test automation projects to conform with DevOps best practices that
support test automation in continuous testing

3.3 Application and Viability of Test Automation

CT-TAS-3.3.1 (K2) Explain criteria for determining the suitability of tests for test automation

CT-TAS-3.3.2 (K2) Identify challenges that only test automation can address

CT-TAS-3.3.3 (K2) Identify test conditions that are difficult to automate

Certified Tester Test Automation Strategy Specialist (CT-TAS)

 v1.0 Page 23 2024/05/03

© International Software Testing Qualifications Board

3.1 Integration Across Test Levels

3.1.1 Differentiate Between Test Automation Distributions

Mike Cohn devised the original concept of a test automation pyramid describing three levels: unit (the

ISTQB calls this component), service, and UI. Since then, many variations have appeared, and they all

share the same basic principles of describing the role of test levels and distribution of test cases across

those levels (see the ISTQB CTFL Syllabus, section 5.1.6 Test Pyramid).

The focus in Mike Cohn’s original test automation pyramid is on what test types are carried out by the

TAS. The service level can be broken down into three test types: component integration testing, contract

testing and API testing.

Unit testing, (the ISTQB calls this component testing) is for validating individual components, focusing on

the code quality. Component integration testing allows for validation of the user interface (UI) and API by

leveraging test doubles, such as mocks and stubs. Contract testing enables validation of the contracts

between services. API testing focuses on the functional validation of given services with real data through

real service connections. UI testing is end-to-end testing of a system, interacting with its GUI.

It is helpful to draw the current state of testing as a baseline and the target state. This provides a clear

understanding of what is missing or what is an acceptable level of testing. This will indicate the amount of

testing carried out on each test level and whether it is manual or automated testing. The target state also

depends on the timeline, and what is achievable within that time frame. If feasible to achieve, then the

pyramid shape should be the target shape.

Examples of test distributions:

● Pyramid: This is a balanced distribution of testing with less testing carried out on the higher test

levels and more on the lower test levels with stable and quicker tests. If the available resources

and time frame allows it, then this is often the target state pyramid.

● Ice cream cone: This is the inverted version of the pyramid. There is a balanced amount of

service testing, but testing is heavily dependent on finding the majority of defects in the UI test

level, which is typically more costly to automate due to its complexity. Due to the lack of

component testing, defects are found later in the SDLC.

● Hourglass: Testing is heavy on the highest and lowest test levels, and service level testing is

mostly missing, resulting in integration defects. If the business logic is provided by APIs (i.e.,

services), then many of the UI tests can easily be moved to lower test levels.

● Umbrella: Testing is completely dependent on costly UI tests. This results in slow defect

turnaround, costly maintenance of test cases and the TAS. If it is not technically possible to

implement lower-level test cases, then moving away from the umbrella shape might not be

achievable, and the focus should be on optimizing the UI test automation suite, reducing test

execution time, and improving stability.

Certified Tester Test Automation Strategy Specialist (CT-TAS)

 v1.0 Page 24 2024/05/03

© International Software Testing Qualifications Board

Figure 1: Examples of Test Distributions

3.1.2 Select a Test Automation Approach Based on the System Under Test
Architecture

There are many ways one can define the test levels in a test strategy. Which one to choose is heavily

dependent on several factors such as the organization’s culture, overall maturity of software engineering,

the SDLC followed and whether the SUT has a mainframe or microservices architecture.

Although the pyramid shape is considered as the ideal test distribution, it is not always achievable, or

takes a longer time to transition to that final state. It is good practice to have a realistic shape as the

target state such as transforming from the umbrella shape to the hourglass one. Once that is achieved, a

new target state can be determined.

Choosing the appropriate test automation distribution for mainframe systems differs from modern

software development and again depends on many factors as some of the levels might not be possible to

automate at all. Access to mainframes is traditionally done through terminal emulation (i.e., green

screens). Validation of the batch processes is possible but limited. Component testing is more difficult to

carry out. As there are little to no microservices present, it is not always an option to validate data

communication between interfaces with API testing. Testing through batch jobs, databases and a GUI is

more prevalent.

Organizations that are modernizing their legacy solutions, slowly shifting towards a microservices

architecture can introduce API testing and contract testing to the modernized parts of the system.

3.1.3 Demonstrate Ways to Optimize Test Automation Distribution to Achieve Shift Left
and Shift Right Approaches

Once the current state distribution is identified and the target state distribution is selected, then a

roadmap of improvements can be planned. This determines what to test with automation (i.e., the scope

of test automation) and how to test (i.e., the test automation strategy). A prioritized backlog of items to

implement and the entry criteria for test automation need to be determined.

In case of an unbalanced test automation distribution, it is recommended to go with a bottom-up

approach. If code coverage is low, then it is a sign of a lack of component test cases, and additional

component test cases need to be written. As a second step, the quality of the component tests needs to

be reviewed and, if necessary, improved. Suggesting best practices, following a test-driven development

technique, and holding test technique workshops can improve the quality of the test automation.

Certified Tester Test Automation Strategy Specialist (CT-TAS)

 v1.0 Page 25 2024/05/03

© International Software Testing Qualifications Board

Introducing component testing for UI and API tests, leveraging test doubles (e.g., mocks, stubs) helps

achieve a shift left from expensive, slow, and unreliable tests. Removing the reliance on real services and

data improves the consistency of test execution and provides early feedback that is easy to integrate into

CI/CD pipelines.

In recent years, contract testing has been increasingly prominent. By validating the contract between a

provider and a consumer, it is easier to find root causes of defects earlier. Teams will not be reliant on

API tests, nor UI tests to detect defects from underlying services, and instead can decrease the number

of such test cases. Building a call graph for APIs is a clever way to track which APIs are connected to

each other, and which ones are the consumers or the producers of a selected API. This allows better

identification of potential pain points of a system.

While shift left is an approach that involves moving tests earlier in the SDLC, shift right moves tests later,

when the SUT has been released, as a means to evaluate performance in a pre-production test

environment or in production. By applying shift right, testers can monitor application and API performance

while getting feedback from actual users. Although test automation is more prominent in a shift left

approach, if it is combined with observability, then test automation can help in making decisions quicker

on whether a full release can go ahead, or the release candidate needs to be rolled back.

Shift right testing aims to:

● Understand user preferences

● Support canary releases and dark launches to minimally disrupt user functionality

● Identify defects in production early

● Help expand the scope and use of test automation

● Increase coverage

3.2 Strategic Considerations in Different Software Development Lifecycle
Models

3.2.1 Explain How Test Automation Projects Conform with Legacy Software
Development Lifecycle Models

In the waterfall model, the testing phase comes after the requirement analysis, system design and

implementation phases. Due to that strict order, test automation activities start later. Longer cycles

between testing means fewer opportunities to leverage test automation, and the feedback from test

automation usually comes too late, resulting in a lower return on investment (ROI).

In the V-model, all the test planning along with documentation preparation happens in early phases. As

an example, the architecture design phase produces the integration test design, which sets up testing

earlier than in the waterfall. Unfortunately, the actual implementation of a TAS still comes later in the

SDLC, and although the ROI of test automation is higher compared to the waterfall model, it still falls

behind modern Agile software development practices.

Certified Tester Test Automation Strategy Specialist (CT-TAS)

 v1.0 Page 26 2024/05/03

© International Software Testing Qualifications Board

3.2.2 Explain How Test Automation Projects Conform with Agile Software
Development Best Practices that Support Test Automation

One of the ideals of following Agile software development is to achieve in-sprint test automation. This

means determining all the necessary test automation activities as part of the exit criteria for each of the

user stories. It includes the test case definitions, implementation of automated test cases, updates to the

TAF and in some cases integration to a CI/CD pipeline. Organizations that do not apply Agile practices

correctly do not include an estimate of test effort and either administer them in a separate ticket or do not

monitor them at all. By achieving in-sprint test automation, Agile teams ensure that they are ready to

deploy the agreed scope within or by the end of each sprint. If a team is not mature from an Agile

perspectives, then the first goal should be achieving in-sprint testing, while automation would lag behind

by a sprint. From that, a team can work their way into achieving in-sprint test automation.

3.2.3 Prepare for Test Automation Projects to Conform with DevOps Best Practices to
Achieve Continuous Testing

Agile software development is focused on how work is organized, while DevOps is responsible for the

end-to-end delivery of software. This is achieved by automating build, integration, test, deployment, and

production activities. This facilitates continuous testing through feedback loops that ensure continuous

improvement.

Emphasis is more on implementing lower-level automated test cases including component, component

integration and contract tests. Reducing reliance on real data and services, the tests will be executed in a

shorter time. If feasible, test automation should be executed in the same pipeline where the SUT is built.

Different test suites are triggered after each development and build phase (e.g., local, pull request,

merge, and deploy).

If the testers have the capacity to build larger UI and API test suites, then those are executed separately

to provide additional value. Manual testing efforts are suggested to focus on exploratory testing and end-

user feedback, as a complementary activity to test automation.

3.3 Applicability and Viability of Test Automation

3.3.1 Explain Criteria for Determining the Suitability of Tests for Test Automation

Selecting test cases for test automation is usually done by a test analyst who either understands which

test cases can be automated, or by a TAE who has the necessary domain knowledge to make such

decisions.

Certified Tester Test Automation Strategy Specialist (CT-TAS)

 v1.0 Page 27 2024/05/03

© International Software Testing Qualifications Board

The following are considered when selecting and prioritizing test cases for test automation:

● Is it technically possible to implement the test cases in an automated fashion?

● Are there any technical challenges that impact the delivery of automated test cases? Is the team

prepared and well trained to do the implementation work?

● Does the coding effort provide an adequate ROI? (see section 5.1.1)

● Is there value in running the test cases frequently?

● Is it a functional or non-functional test? Is it part of the smoke test suite, regression test suite, or

confirmation test suite?

● Is the test case repeatable?

● Is the test case easy to maintain when the SUT changes due to updates?

● Does the test case cover frequently used business workflows?

● Is there a functional overlap between tests that allow reusability of test steps and test data?

3.3.2 Identify Challenges that Only Test Automation Can Address

There are certain tests that can only be carried out with test automation. These include categories when:

1 Manual test execution time takes longer than what is adequate

2 Execution of test cases need to be synchronized

3 Test results need to be available in a pipeline

4 Large log files need to be parsed for defects

5 Precision in timing in tests is required

6 Test permutations are required across multiple OSs, browsers, devices, locations, or

configurations

7 A large volume of test executions and/or data input is required to maximize coverage

8 Any non-functional testing that requires automated monitoring and analysis, or input from a huge

amount of users such as stress testing or reliability testing

Certified Tester Test Automation Strategy Specialist (CT-TAS)

 v1.0 Page 28 2024/05/03

© International Software Testing Qualifications Board

3.3.3 Identify Test Conditions that are Difficult to Automate

There are certain test conditions that make automating test cases a difficult challenge or even an

impossible task. There are many real-life examples. Some of these are listed below:

● Validation of design requirements including the consistency of the UI through different platforms.

The overall look and feel of software are subjective and require a human’s review.

● Any test case that involves too much human interaction. In the finance sector, a good example

would be a loan application. In this process there can be cases of certain regulations or

conditions (e.g., not enough income, and incorrect personal details). In such situations, agents

need to double check the actual loan application and make manual decisions or contact the

customer.

● Technical difficulties blocking test automation activities, such as OS level restrictions. One

example is native OS software which sends text messages to the users. Interactions or

validations of those text messages are not possible with UI test automation tools, as the OS does

not allow interactions outside of the target SUT.

● Test conditions with a lengthy time dependency would make test automation inefficient and is

often difficult to properly set up compared to manual test execution. As an example, the tester

needs to login to the SUT, refresh the home page content and wait two hours for the SUT to

automatically logout due to a session timeout. If the elapsed time cannot be altered in any manual

way (e.g., mocks, server-side responses, and OS level time changes), then implementing such

test cases in an automated fashion is not advised.

Certified Tester Test Automation Strategy Specialist (CT-TAS)

 v1.0 Page 29 2024/05/03

© International Software Testing Qualifications Board

4 Organizational Deployment and Release Strategies for
Test Automation – 135 minutes (K2)

Keywords

component, confirmation testing, quality gate

Learning Objectives for Chapter 4:

4.1 Test Automation Solution Planning

CT-TAS-4.1.1 (K2) Identify ways how test automation supports shorter time to market

CT-TAS-4.1.2 (K2) Identify ways in which test automation helps verify reported defects according to
requirements

CT-TAS-4.1.3 (K2) Define approaches that allow for the development of operationally relevant scenarios
for test automation

4.2 Deployment Strategies

CT-TAS-4.2.1 (K2) Define a test automation deployment strategy

CT-TAS-4.2.2 (K2) Identify test automation risks in deployment

CT-TAS-4.2.3 (K2) Define approaches to mitigate test deployment risks

4.3 Dependencies within the Test Environment

CT-TAS-4.3.1 (K2) Define test automation components in the test environment

CT-TAS-4.3.2 (K2) Identify infrastructure components and dependencies of test automation

CT-TAS-4.3.3 (K2) Define test automation data and interface requirements for integration within the
system under test

Certified Tester Test Automation Strategy Specialist (CT-TAS)

 v1.0 Page 30 2024/05/03

© International Software Testing Qualifications Board

4.1 Test Automation Solution Planning

4.1.1 Identify ways how test automation supports shorter time to market

Test automation helps bring software to the market faster because it helps cut down on the test cycle

time. Testing prior to a software release requires a thorough amount of verification and validation. This

can be particularly significant during regression testing as this type of testing promotes reuse, driving

down cost, and providing consistency between test executions.

Test automation helps decrease the manual test effort and provides quick feedback to developers while

covering the same scope of testing. It also allows testing earlier in the software development lifecycle if

component tests and component integration tests are automated, which are typically not performed in a

manual fashion.

A quality gate is an enforced measure built into your process that the software needs to meet before it

can proceed to the next phase. Setting up quality gates based on test automation allows an accelerated

deployment process to a pre-production or to a production environment. By leveraging these quality

gates, defects can be found earlier, which results in the time to market being shorter. Test execution time

can be reduced by leveraging parallel test execution and following a shift left approach. A shift left

approach promotes a culture of quality consciousness and encourages testing earlier in the software

development lifecycle. This may include multiple independent test cases or cross-browser testing.

For additional information, see sections 3.1.3, 6.1.2, and 6.2.1.

4.1.2 Identify Ways in Which Test Automation Helps Verify Reported Defects

Confirmation testing performed following a code fix can address a reported defect. A tester typically follows
the test steps necessary to replicate the defect to verify that the defect no longer exists.

Defects have a way of reintroducing themselves into subsequent releases (e.g., this may indicate a
configuration management or code repository management problem) and therefore confirmation tests are
suitable candidates for test automation and can be added to the existing regression test suite.

An automated confirmation test typically has a narrow scope of functionality. Implementation can occur at
any point once a defect is reported and the test steps needed to replicate it are understood.

Tracking automated confirmation tests allows for reporting the time and the number of test cycles expended
in resolving defects.

By verifying fixes across multiple platforms, devices, browsers, and OS versions with test automation, the
amount of time spent on testing is greatly reduced.

Certified Tester Test Automation Strategy Specialist (CT-TAS)

 v1.0 Page 31 2024/05/03

© International Software Testing Qualifications Board

4.1.3 Define Approaches that Allow for the Development of Operationally Relevant
Scenarios for Test Automation

Operational acceptance testing assures software readiness for production systems and is typically

conducted right before a release. This effort is meant to do a final validation of the systems, components,

and other infrastructure of the SUT, and to test its readiness for production. This is necessary because

despite a TAE’s best efforts, there is no guarantee that the SUT will behave the same way outside of the

test environment and in production.

 A good operational test plan will include testing for reliability, testing for fault tolerance, integrity, and

maintainability. Below are test automation approaches that can be used:

● Static code analysis – Automated tools that analyze code for security and vulnerabilities. Test

results are stored for trend analysis over time.

● End-to-end testing – Automated test scripts that conduct end-to-end user scenarios and exercise

all aspects of the test environment to uncover any defects.

● Failover testing – Automated test scripts that specifically test what happens when an application’s

hardware comes offline. Some examples include how does the application recover when physical

servers, cloud servers, networks, computer disks and other hardware components malfunction.

Test scripts are designed to measure success or failure of the SUT’s ability to automatically

recover and this is particularly important for organizations implementing chaos engineering.

● Backup and restore testing – Automated test scripts that test the success of making a backup of

the current version and then rolling back to a previous point (i.e., an older version of the software)

● Performance efficiency testing (e.g., load testing) – Automated test scripts that can be used to

simulate many users exercising the SUT at once. Test results are stored for comparison and

trended over time.

● Operational documentation review – Automated test scripts can be used for this activity to

compare versions of the SUT’s documentation and signal to development teams whether an

update is needed based on new features being added to a particular release.

● Security testing – Automated test scripts can be created in combination with industry standard

security test tools to evaluate the SUT, in a static and dynamic manner. Test results are stored

over time for comparison and trend analysis.

● Monitoring based on an organization’s service level agreement – Automated test scripts used

during the SDLC can be repurposed to monitor production operations and send alerts if an

automated test fails. This is a proactive measure to catch production outages before real users

experience them.

Test automation for operational software validation can provide immense benefits especially if the

automated tests can be executed repeatedly and in multiple environments. Dedicated automated test

suites can be created so that test results can be generated and compared with previous test executions.

This ensures consistency when new versions of the SUT are released. A reliable automated test suite of

operational specific test conditions can reduce costs over time.

Certified Tester Test Automation Strategy Specialist (CT-TAS)

 v1.0 Page 32 2024/05/03

© International Software Testing Qualifications Board

4.2 Test Automation Deployment Strategies

4.2.1 Define a Test Automation Deployment Strategy

A good test automation deployment strategy will take into account, but not limited to, the overall test

environment, the test tools that are available, access to the SUT, test script storage and other

dependencies, and test data provisioning. With these high-level considerations in mind, a TAE can begin

thinking about a strategy for developing and deploying the TAS.

Test environment – The TAEs should consider how they are going to access the SUT in the different

test environments. When they start to develop their test automation testware, whether they are using a

keyword-driven approach or another solution, they must consider how this solution will run in multiple test

environments. For example, a test script should be developed in such a way that it can run in a test

environment and in a pre-production environment with minimal changes. Typically, it is a matter of

changing a uniform resource locator (URL) for a Web-based application and then the test script runs the

same way regardless of which test environment it is in.

Tools – TAEs will also need to consider what tools they are using to build the TAS. If it is a commercial

tool, chances are they will need to understand how it is licensed. The TAE may find that their test

environment needs to have access to the tool’s license server. This needs to be considered when the test

script is intended to be used in multiple test environments. Just because the licensing server is available

in the test environment does not necessarily mean it will be available in the pre-production environment.

Software access – Important considerations need to be understood on how to access the SUT. Test

scripts can be designed to accept parameters so that specific users or credentials with special access

can be quickly updated when the SUT end points change. This again becomes very important when

moving into different test environments and the URL needs to change. In addition, it may be necessary to

use different credentials (e.g., via user and test accounts, biometrics, and smart cards) depending on the

pre-production environment. A good, automated test script design will include enough flexibility so that

simple parameters can be set, and the test scripts executed as expected regardless of the test

environment.

Test script storage – The TAE will want to decide on a central location to store and manage automated

test scripts. A good strategy would incorporate a source code repository that utilizes configuration

management. In this way, the test scripts can be accessible from multiple test environments as long as

they have access to the source code repository and versions can be created for the specific version of the

SUT. All configurations and dependencies can be saved in the same repository as the test scripts and

provide optimal portability. In short, the TAS, TAF, and all test cases can be stored and managed within

repositories.

Certified Tester Test Automation Strategy Specialist (CT-TAS)

 v1.0 Page 33 2024/05/03

© International Software Testing Qualifications Board

Data provisioning – It will be important to understand if an automated test script is dependent on certain

test data already existing in the test environment where the SUT is being tested. Good test script design

will avoid static data (i.e., fixed data sets) as much as possible. However, there will be situations where it

is not feasible. In these cases, the TAE will need to determine a solution to have the test data preloaded

or use test automation to create setup test scripts that generate the necessary test data before the real

test scripts run and test the SUT. There are pros and cons to both approaches. On the one hand it is

convenient to have an administrator preload test data. However, the TAE then relies on another resource

to have the availability to support them. Being self-sufficient with a setup test script removes the need to

rely on another resource. However, it takes time to put these test scripts together and becomes another

part of the solution that needs to be maintained.

By accounting for all of the items mentioned above, the test automation strategy will be able to provide

proper planning and control of test automation activities.

4.2.2 Identify Test Automation Risks in Deployment

Technical issues can lead to product risks and project risks (for additional information, see the CTFL
Syllabus, section 5.2.2). Typical technical issues include:

● Too many abstractions can lead to difficulty in understanding what the test automation code is
really doing (e.g., with keywords in the keyword-driven approach)

● Test data tables can become too large/complex/cumbersome to migrate to other test

environments resulting in inconsistent status outcomes

● Dependency on the TAS to use certain OS libraries or other components that may not be available
in all the test environments of the SUT

Typical deployment project risks include:

● Staffing issues: Getting the right people to maintain the test automation may be difficult

● Unplanned TAS maintenance due to SUT updates that cause the TAS to operate incorrectly

● Delays in introducing test automation

● Delays in updating the TAS based on the changes done to the SUT

● The TAS cannot capture nonstandard UI objects

● Allowing outdated test cases to remain in test suites, wasting test execution time

Potential failure points of the TAS project include:

● Migration to a different test environment

● Deployment to a production environment

● Forgetting that automation is software that should also be tested

It is important to realize that various technical issues, project risks, and potential failure points can

jeopardize the success of test automation projects. Common technical issues include complexities

arising from excessive abstractions, challenges with test data management, and dependencies on

specific components. Project risks also need to account for difficulties in staffing, maintenance issues due

to system updates, deployment delays, and the presence of outdated test cases. Additionally, potential

failure points such as migration to different environments and neglecting the need to test the automation

software itself, should be addressed with proper planning. Overall, monitoring and proactive measures

will ensure the success of test automation projects.

Certified Tester Test Automation Strategy Specialist (CT-TAS)

 v1.0 Page 34 2024/05/03

© International Software Testing Qualifications Board

4.2.3 Define Approaches To Mitigate Deployment Risks

There are many risk mitigation strategies that can be employed to deal with these risk areas. Some of
these are discussed below.

The TAS has an SDLC of its own, whether it is in-house developed or an acquired solution. One thing to
remember is that the TAS, like any other software, needs to be under configuration management and its
features documented. Otherwise, it becomes exceedingly difficult to deploy different parts of it and make
them work together or work in certain test environments.

Also, there has to be a documented, clear, and easy to follow deployment procedure. This procedure is
version dependent; therefore, it has to be included under configuration management as well.

There are two distinct cases when deploying a TAS:

1. First-time deployment
2. Maintenance deployment – the TAS already exists, and an update needs to be deployed

The risks related to the first-time deployment include:

● Total test execution time of the test suite may be longer than the planned test execution time for

the test cycle. In this case it is important to make sure to plan enough time for the test suite to

execute in its entirety before the next scheduled test cycle begins.

● Installation and configuration issues with test environments exist (e.g., database setup and initial

load, and services start/stop). The TAS needs a test fixture (i.e., a predefined dataset) to create

the necessary preconditions for automated test cases to run within the test environment.

For maintenance deployments, there are additional considerations. The TAS in itself needs to evolve, and
the updates for it have to be deployed into production. Before deploying an updated version of the TAS
into production, it needs to be tested. It is therefore necessary to check the new functionality, to verify that
a test suite can be run on the updated TAS, that test reports can be sent, and that there are no performance
defects or other quality issues. In some cases, the entire test suite may need to be changed to fit the latest
version of the TAS.

4.3 Dependencies within the Test Environment

4.3.1 Define test automation components in the test environment

Test automation components typically consist of tools, virtual machines, automation test scripts,

containers, and configurations. The test environment also includes the SUT. The test automation

components in the test environment can be defined as follows:

SUT – This is an obvious part of the test environment. The SUT can be tested as a whole or divided into

subcomponents (e.g., API, Web-based interface, and database).

Platform – The platform describes where the test automation components are hosted. This includes the

cloud infrastructure, network, virtual machines, and containers that may be used to make test automation

efficient and portable.

Certified Tester Test Automation Strategy Specialist (CT-TAS)

 v1.0 Page 35 2024/05/03

© International Software Testing Qualifications Board

Test cases and test suites – This describes individual test cases that are made up of test steps that

direct both automated and manual actions. The test suites describe a logical grouping of test cases so

that they can be executed together efficiently.

Tools – Different test automation tools are used for several reasons. A collection of tools would include

those for UI test automation, testing API endpoints, data generation, monitoring, requirements

management, defect management, logging and reporting tools, and tools for generating trends based on

metrics.

TAF – This includes all the items that go into making up the TAF design. TAFs include driver scripts,

common libraries, templates for automated test cases, data loading/provisioning scripts, documentation

on how to use TAF components, and tutorials that help TAEs utilize the TAF. For additional information,

see the CTAL-TAE Syllabus, section 3.1.

Maintenance of the test components is a major consideration because overcomplicating the test

environment may result in hours of unwanted time fixing defects in the TAF instead of benefiting from the

solution. It is important to find the right blend of tools, configuration, and platform portability to make the

components as reusable as possible.

4.3.2 Identify Infrastructure Components and Dependencies of Test Automation

There are a number of infrastructure components and dependencies to be aware of when assembling test
automation. Collectively they cover all of the prerequisites necessary to run a TAS. The major
components and dependencies include:

Host machines – These can be virtual machines, physical servers, laptops, and devices (e.g., tablet, and
mobile). They have the test automation software installed on them and that is where test scripts are
created and executed.

Network – This is what gives the TAS access to the SUT. It can also include the networking together of

multiple host machines to provide parallel execution of automated tests. Typically, host machines are

required to be on the same network and configured properly to communicate with each other.

Platform – Test automation, like any other software, can run on cloud platforms or designed to run in

containers. As long as the platform provides permissions and access to the underlying OS, all necessary

tools and dependencies can be installed.

Software dependencies – To make the test automation tools perform correctly, it is necessary to

understand all other dependencies that the test automation has. For example, a particular test automation

tool may require the latest version of a programming language to be installed on the host machine first.

TAEs need to account for these dependencies before and after selecting a tool.

SUT – Once the components, dependencies, and overall infrastructure have been considered and
configured properly, the last step is to ensure access to the SUT. In addition to the network, it is also
necessary to consider how to interface with the SUT. For example, in a Web-based application, a browser
needs to be installed on the host machine. The type of browser and version needs to be considered.

Certified Tester Test Automation Strategy Specialist (CT-TAS)

 v1.0 Page 36 2024/05/03

© International Software Testing Qualifications Board

4.3.3 Define Test Automation Data and Interface Requirements

Two considerations TAEs need to think about before developing test automation scripts are how they
plan to interface with the SUT and what are the data dependencies of the test cases. The following are
examples:

API – If the SUT utilizes an API, this can be tested at the end point level instead of requiring a UI to
interface at the application level. This may require a deeper understanding of the end points and data
communications that are hidden by a UI. The TAE would have to understand in what order to call APIs to
create a business process and how to correlate the data to keep the test case intact. APIs that are
exposed to the Internet are also called web APIs or web services.

Database interface – Some test automation tools have the ability to interface directly with the SUT’s
underlying database. Test scripts can be written to verify data within columns and rows to ensure that
stored procedures and other database rules are configured properly. This may require specific data
values to already exist in the database for reliability testing.

Interface compatibility – Use of contract testing ensures that two separate systems (e.g., two
microservices) are compatible and are able to communicate with one another. Contracts testing can be
consumer-driven, producer-driven, and bidirectional. Additional details can be found in the CTAL-TAE
Syllabus, section 5.1.3.

Furthermore, TAEs must carefully consider how they will interface with the SUT and understand the data

dependencies within test cases. Whether testing through APIs, database interfaces, or ensuring interface

compatibility between systems, attention to these considerations is essential for robust and effective test

automation. By addressing these factors thoughtfully, TAEs can enhance the reliability and efficiency of

their automation efforts, ultimately contributing to the quality and success of the SUT.

Certified Tester Test Automation Strategy Specialist (CT-TAS)

 v1.0 Page 37 2024/05/03

© International Software Testing Qualifications Board

5 Test Automation Impact Analysis – 150 minutes (K3)

Keywords

coverage, test report

Learning Objectives for Chapter 5:

5.1 Investment in Setting Up and Maintaining Test Automation

CT-TAS-5.1.1 (K3) Show the return on investment of building a test automation solution

5.2 Test Automation Metrics

CT-TAS-5.2.1 (K2) Classify metrics for test automation

5.3 The Value of Test Automation on the Project and Organization Level

CT-TAS-5.3.1 (K3) Identify organizational considerations for use of test automation

CT-TAS-5.3.2 (K3) Analyze project characteristics that help determine optimal implementation of test
automation test objectives

5.4 Decisions Made from Test Automation Reports

CT-TAS-5.4.1 (K2) Analyze test report data to inform decision making

Certified Tester Test Automation Strategy Specialist (CT-TAS)

 v1.0 Page 38 2024/05/03

© International Software Testing Qualifications Board

5.1 Investment in Setting Up and Maintaining Test Automation

5.1.1 Show Return On Investment of Building a Test Automation Solution

It is important to estimate the setup and maintenance costs of test automation before proceeding to start a

project implementation. Beyond the values that automation can bring to a project, understanding the ROI

calculation for the project is beneficial.

The ROI calculation can provide meaningful feedback at any given moment in a project lifecycle by

demonstrating the return for an activity for the effort invested. The ROI calculation can be further adjusted

by including both manual tester costs and TAE costs by simply multiplying the time spent with their

respective labor costs.

To calculate the ROI, one needs to determine the investment of test automation (i.e., time and cost) and

the savings achieved with it:

ROI = Savings / Investment

It is important to note that the savings and the investment can be calculated considering different metrics

and data, in different measures and units. In the scope of this syllabus, a simple model is used to

demonstrate the approach, with time units and not the cost. If certain activities are only measured in cost,

that amount can be converted to time using a rate specific to the project.

Generally, the savings achieved by test automation are because the same tests can be run in significantly

shorter time than run manually. This also means they can be run more often. Therefore, the number of tests

being executed can be increased.

To calculate savings, you need to consider the following metrics:

● Time to run a test case manually

● Time to run an automated test case

● Number of test cases

● Number of test runs

To calculate investment, you need to consider the following metrics:

● Time to set up test automation

● Average time to develop automated test scripts

● Number of automated test scripts implemented

● Average maintenance time of an automated test script

● Time to run an automated test script

● Percentage of failed automated test scripts

● Number of test cases defined

● Number of test runs

By adapting the outlined model to Agile software development, a project’s sprints can be forecast as

illustrated in the graph below. One can determine the sprint from which test automation has returned its

investment by using the graph.

Certified Tester Test Automation Strategy Specialist (CT-TAS)

 v1.0 Page 39 2024/05/03

© International Software Testing Qualifications Board

Figure 2: An Example of an ROI calculation showing the point of Return on Investment

Keep in mind certain connections between the metrics measured to calculate the ROI, including:

● If the planned project duration is less than the turning point of the ROI, it is not worth introducing

test automation. In this case, by executing the tests manually, time and effort are saved.

● As the investment depends significantly on the execution time of the automated tests, applying the

test pyramid and implementing test cases at the right test level can reduce this execution time and

improve ROI.

5.2 Test Automation Metrics

5.2.1 Classify Metrics for Test Automation

Analyzing trends based on factual data helps in decision making. By collecting metrics of a TAS, the testers
are able to evaluate the TAS and make decisions on:

● TAS suitability to the project
● TAS adaptability for expanded functionality for new test conditions

○ A change in a user flow in the SUT
○ A change in how testing is performed

● Maintainability of test automation because of defects found in the TAS

The cost of measuring should be as low as possible, and this can often be achieved by automating the
collection and reporting of metrics. Some examples can be seen below.

Certified Tester Test Automation Strategy Specialist (CT-TAS)

 v1.0 Page 40 2024/05/03

© International Software Testing Qualifications Board

Pass-fail ratio

This is a common metric and tracks the ratio of the automated tests that passed to the automated tests that
failed to achieve the expected result. The pass-fail ratio = the number of tests that passed / the number of
tests that failed.

Ratio of failures to defects

A common problem with automated tests is that many of them can fail for the same reason, i.e., a single
defect in the SUT. Measuring the number of automated tests that fail for a given defect can help indicate
where this may be a problem. Additionally, one may collect the number of failures per defect and track the
reason for failure: defect in the sub-system, in the whole system, issue with the test data, or infrastructure.

Test automation execution time

One of the easier metrics to determine is the time it takes to execute the automated tests. In the beginning
of the TAS this might not be important, but as the number of automated test cases increases, this metric
may become quite important. This metric includes the build time of the TAS.

Number of automated test cases

This metric can be used to show the progress made by the test automation project. But one has to take into
account that the number of automated test cases does not reveal much information; for example, it does
not indicate the level of coverage.

Functional coverage of test automation

This coverage indicates the percentage of functional requirements covered by automated test cases.

Code coverage

Code coverage tracks how many lines of code is exercised by lower level (i.e., component) tests.

There is no absolute percentage that indicates adequate coverage, and 100% code coverage is often
difficult to attain in anything other than the simplest software. However, it is generally agreed that more
coverage is better as it increases confidence in the SUT. As additional low-level automated tests are added,
code coverage is expected to increase.

5.3 The Value of Test Automation on the Project and Organization Level

5.3.1 Identify Organizational Considerations for Use of Test Automation

Before starting test automation on any project, one needs to identify the following within the organization:

Policies and practices for software development

It is good to check how the development teams are working and what kind of documentation is present.
Any available documentation can be beneficial to identify how test automation can be connected into the
processes of the development teams. Documentation can include the SUT’s technical specification, the
software and development tools used, or any available policies about development, such as code review
guidelines, defined coding standards, and merge processes.

Certified Tester Test Automation Strategy Specialist (CT-TAS)

 v1.0 Page 41 2024/05/03

© International Software Testing Qualifications Board

Existing active test automation projects and their status

In the case of an ongoing development project, there can be one or more ongoing TAS development
projects by different teams. A general recommendation for the decision makers is to check these existing
projects and their status, to see if any of them fit within the defined test objectives of the new TAS. By
analyzing the solution, one can determine whether to reuse any of the existing TAS or to create a new one
based on the current needs.

The organization’s subject matter experts for test automation

It is recommended to look for SMEs who can assist in the roll out of a new TAS within the organization. The
SMEs can share stories and lessons learned about their TAS and their rollout. From this, one can identify
different risks that need to be considered or avoided to have a successful TAS rollout.

Availability of test environments

In the case of large organizations, a general recommendation is to gather information about the existing
test environments, their use, and availability. This information is crucial to avoid ruining any other team's
work by rolling out a new TAS and using the system without any notification or agreement. Often, the needs
of a project will require a new test environment, so the existing ones can be used as a baseline in creating
a new one and the work can be done more easily if the responsible teams and persons are identified and
available.

Test tools and licenses

It is always worthwhile to get information about what tools and licenses the organization currently has. By
identifying these, costs, and timelines, planning of a TAS can be reduced. And tools for a new project may
already be available. For example, if cloud testing is set up through a defined provider, and the licenses
are available for the new project, it does not make sense to use a different cloud provider. It is recommended
to use the same tools and licenses to reduce project costs.

5.3.2 Analyze Project Characteristics that Help Determine Optimal Implementation of
Test Automation Test Objectives

There are several major project characteristics that can define an optimal way of working, and to help

define successful test automation objectives.

Domain

It is important to understand that each domain differs either in regulations or standards. For example, there

are different regulations and risks in the tourism domain compared to finance or healthcare. It is always

recommended to check the different standards and domain restrictions to make sure that the planned test

automation objectives comply.

Platforms

In terms of test automation test objectives, it is also emphasized to evaluate which platforms the project

covers and where it would be beneficial to do test automation. Planning for multiple platform test automation

can be more difficult since there may be a need for multiple solutions to cover the different platforms. In

many cases, such as for mobile and web, the same tools can be used. But planning will determine

reusability of the TAS.

Programming language and technology stack

Certified Tester Test Automation Strategy Specialist (CT-TAS)

 v1.0 Page 42 2024/05/03

© International Software Testing Qualifications Board

The implementation details of a project, like its programming language and technology stack, also

determine what kind of test automation test objectives an organization should define. It is recommended to

use the same programming languages that the developers are using on a given project. By doing so,

collaboration can be much easier, and cross learning by carrying out code reviews together will improve

the quality of the SUT and the knowledge of the TAEs even further.

Maturity of the project

By analyzing the maturity of the project, information can be derived to design the ideal test automation

objective. By identifying the different factors such as the number of test cases, existing CI/CD pipelines,

number of testers and TAEs, different test objectives and a roadmap can be created. For example, if there

are a lot of manual test cases that have high priority and their manual test execution time is long, it is

important to aim to get these automated first to save time and effort. Apart from the above factors, the

timeline of the project is also very important. If the project is short or will end shortly and there is not much

time to get things done, it is not worth planning a big and robust TAS. However, if the project is a greenfield

project, it is worth devising a step-by-step minimum viable product-based incremental roadmap.

Stakeholder buy-in

Many times, test automation is not leveraged due to key stakeholders not buying into it. That can be due

to fears of velocity dropping below their target, tight deadlines, budgeting, or other concerns. After

analysis of the project maturity, if there is room to start implementing a TAS, a strategic stakeholder

needs to identify the product risks, list the benefits of introducing test automation, and come up with an

appropriate plan. This plan needs to highlight the milestones to be achieved with and by test automation

and indicate how the testability of the SUT needs to be improved to successfully introduce a TAS that will

address the identified risks. Lastly, this plan needs to be presented to the stakeholders.

Team knowledge and relevant experience

The most important and relevant factor for successful test automation is a testers’ skills and experience. It

is beneficial to work with the testers and use their knowledge to define test objectives that they and the

business analysts are comfortable with. Often test managers or test leaders create a competency and

skill matrix to identify the available knowledge within the teams, and to identify the gaps at the same time.

These gaps can be identified with different goals such as training and assigned implementation tasks.

Test management support and budgeting

Depending on the size and maturity of the given project, the available budget and test management

support should be considered, while defining the test objectives for test automation. It is important to

define test objectives that can be met, which in return will enable support from test management.

When making a test automation strategy proposal to management, the documentation needs to be

concise, clearly defining currently identified gaps or future costs for test automation is implemented

correctly. A list of recommendations and their benefits pointing out the business value and cost reductions

will encourage test management to approve developing or improving a TAS.

Certified Tester Test Automation Strategy Specialist (CT-TAS)

 v1.0 Page 43 2024/05/03

© International Software Testing Qualifications Board

Quality characteristics

The ISO/IEC 25010:2011 defines the quality characteristics that are listed in the ISTQB CTFL Syllabus,

section 2.2.2. Test Types. These quality characteristics can then be used for evaluating the current TAS,

or determining metrics that will be collected by the TAS.

5.4 Decisions Made from Test Automation Reports

5.4.1 Analyze Test Report Data to Inform Decision Making

The format and the content of a test automation report may vary depending on the stakeholders receiving

it. It can be created for management, operational or technical stakeholders. Additional information can be

found in the CTAL-TAE Syllabus, section 6.1.3.

Upon receiving a test automation report, it can be incorporated into a broader test report, or it can be

consolidated, and then escalated within the organizational structure.

Different stakeholders find different values in such a test automation report. A strategic approach is to

identify key metrics that are important for the stakeholders involved by emphasizing these important

metrics.

Data collected with automation can help:

● Identify trends and perform root cause analysis

● Shift test automation efforts to maintenance

● Shift test automation efforts to improvements and further development of a TAF

● Add capabilities to the overall TAS

● Increase shift left and shift right approaches to testing

● Expand the functional coverage of test automation in future sprints

● Focus more on defect clusters

● Advise developers of areas to improve the code

● Advise on the overall SDLC processes

● Change the content and format of future test automation reports

Based on the information described above, the TAEs in collaboration with other stakeholders can identify

gaps and certain improvement points in the existing test automation coverage and test results.

Certified Tester Test Automation Strategy Specialist (CT-TAS)

 v1.0 Page 44 2024/05/03

© International Software Testing Qualifications Board

6 Implementation and Improvement Strategies for Testing
Automation – 150 minutes (K3)

Keywords

coverage, precondition, test suite

Learning Objectives for Chapter 6:

6.1 Transitioning Activities from Manual Testing to Continuous Testing

CT-TAS-6.1.1 (K2) Describe the factors and planning activities in transitioning from manual testing to test
automation

CT-TAS-6.1.2 (K2) Describe the factors and planning activities in transitioning from test automation to
continuous testing

6.2 Understanding the Factors and Planning Activities in Transitioning from Test Automation to
Continuous Testing

CT-TAS-6.2.1 (K3) Conduct an evaluation of the test automation assets and practices to identify
improvement areas

Certified Tester Test Automation Strategy Specialist (CT-TAS)

 v1.0 Page 45 2024/05/03

© International Software Testing Qualifications Board

6.1 Transitioning Activities from Manual Testing to Continuous Testing

6.1.1 Describe the Factors and Planning Activities in Transitioning from Manual Testing
to Test Automation

The easiest opportunity for transitioning from manual testing to test automation is to target regression
testing. A regression test suite grows as today’s functional and non-functional tests become tomorrow’s
regression tests. It is only a matter of time before the number of regression tests becomes greater than
the time and resources available to a traditional manual test team.

Transitioning costs

During transition from manual testing to automated testing, the project should expect increased costs as
both manual testing and automated testing take place simultaneously. Once automated tests are deemed
to adequately replace or supersede manual test execution activities, more effort can be shifted towards
exploratory testing and defining additional test cases for test automation, which has a different cost
compared to manual regression testing.

Functional overlap

Functional overlap occurs when test script developers include the same exact test automation steps in
different test cases. For example, most test cases will start with a login sequence of test steps. This can
include entering a username, password, and selecting a login button. Adding it in each test case increases
maintenance activities. If there is ever an additional test step added to the login process, the same change
will have to be updated in every test case. A better approach is to make a repeatable test automation
component out of the login process and have all test cases reference that functionality. See the CTAL-TAE
Syllabus, section 3.1.5 for details about the flow model pattern.

Data sharing

Tests often share test data. This can occur when tests use the same record of test data to execute different
SUT functionality. An example of this might be test case “A” which verifies an employee’s available vacation
time, while test case “B” verifies what courses the employee took as part of their career development goals.
Each test case uses the same employee but verifies different parameters. In a manual test environment,
the employee test data would typically be duplicated many times across each manual test case which
verified employee test data using this employee. However, in an automated test, test data which is shared
should, where possible and feasible, be stored and accessed from a single source to avoid duplication, or
the introduction of errors.

Test interdependency

When executing complex regression tests, one test may have a dependency on one or more other tests.
This occurrence can be quite common. For example, a new “Order ID” gets created as a result of a test
step. Subsequent tests may want to verify that: a) the new order is correctly displayed in the system, b)
changes to the order are possible, or c) deleting the order is successful. In each case, the “Order ID” value
which is dynamically created in the first test must be captured for reuse by later tests. Depending on the
design of the TAS, this can be addressed. If the “Order ID” cannot be found by subsequent test cases, they
will fail.

Certified Tester Test Automation Strategy Specialist (CT-TAS)

 v1.0 Page 46 2024/05/03

© International Software Testing Qualifications Board

Test execution preconditions

All too often TAEs will immediately begin test script development without first understanding the
preconditions that go into making sure a test case can execute reliably. This can become extremely
challenging when trying to execute a test case against the same SUT in multiple test environments.
Examples of preconditions include usernames, account roles, data table values, and other specific data
entries that make the test case repeatable. A good strategy will include upfront analysis to understand what
information needs to exist in the SUT before automating a particular test case. Additionally, the strategy
can be enhanced by automating the creation of preconditions prior to the real test cases running, to save
time. This may include running precondition test scripts that populate the SUT from the UI or automated
batch processes that load test data to a database.

Functional coverage

Identify the functional gaps in testing that can be candidates for test automation, as explained in Chapter
3. 100% of the manual test cases that are automated does not represent 100% of all possible test cases
that can be automated with test tools. As more tests become automated, testers get back test execution
time which they can use to identify additional SUT tests to increase coverage.

Executable tests

Before converting a manual regression test into an automated regression test, it is important to verify that
the manual regression test operates correctly. This then provides the correct starting point to ensure a
successful conversion to an automated regression test. If the manual regression test does not execute
correctly, it may be because it was poorly written, uses invalid test data, is out of date or out of sync with
the current SUT, or because of an SUT defect. Automating it prior to understanding and/or resolving the
root cause of the failure will create a non-functioning automated regression test which is wasteful and
unproductive. It is important to demonstrate equivalent functionality that the new automated tests bring, to
convey confidence in automated tests that will replace the old manual tests.

6.1.2 Describe the Factors and Planning Activities in Transitioning from Test
Automation to Continuous Testing

Continuous testing involves utilizing test assets far more frequently than in traditional SDLCs. This is done

by starting to constantly run test suites immediately after code changes are done and made available in the

test environments. This helps provide immediate feedback and reduces defect costs by catching defects

earlier in the process. This can be handled with sophisticated development tools and the willingness to shift

testing earlier in the build process.

Certified Tester Test Automation Strategy Specialist (CT-TAS)

 v1.0 Page 47 2024/05/03

© International Software Testing Qualifications Board

Adapting the TAS for continuous testing requires the following:

● The test suites need to change to run on the updated TAS: make the necessary changes to the

test suites and test them before deploying them on the TAS

● Stubs, drivers, and interfaces used in testing need to change to fit with the updated TAS: make

the necessary changes to the test harness and test it before deploying it on the TAS

● The infrastructure needs to change to accommodate the updated TAS: make an assessment of

the infrastructure components that need to be changed

● The updated TAS has additional defects or performance defects: perform an analysis of risks

versus benefits. If the defects discovered make it impossible to update the TAS, it may be best

not to proceed with the update or to wait for a next version of the TAS. If the defects are

negligible compared to the benefits of correcting them, the TAS can still be updated.

● Be sure to create release notes of known defects to notify the TAEs and other stakeholders and

try to get an estimate of when the defects are going to be fixed

All of the points mentioned in this section become particularly important when utilizing CI/CD. Putting

together pipelines and automating the build process is a natural fit with the TAS being developed. If the

build orchestration tool is in the correct test environment, the pipeline can be extended to include automated

tests to verify the SUT right after deployment. This requires that the test automation tool be properly

configured and can access the SUT, and that it can reach out to the code repository and access data

provisioning scripts.

6.2 Test Automation Strategy Across the Organization

6.2.1 Conduct an Evaluation of the Test Automation Assets and Practices to Identify
Improvement Areas

Just like any other development activity, it is important to have a strategy for pausing the TAS development
and looking for opportunities to refactor the solution. The areas to monitor are initial implementation,
maintenance, and the ability to evaluate the solution from a repeatability standpoint. Some good categories
to keep track of are how many hours are spent developing the TAS, how many hours are spent fixing the
TAS, and how much time savings do the testers realize compared to manual testing. An indicator that
something is wrong is if the TAS maintenance time is greater than the manual testing time.

Certified Tester Test Automation Strategy Specialist (CT-TAS)

 v1.0 Page 48 2024/05/03

© International Software Testing Qualifications Board

Before starting with the first deployment of a TAS, it is important to be sure it can run in its own environment,
it is isolated from random changes, and test cases can be updated and managed. Both the TAS and its
infrastructure must be maintained. In the case of first-time deployment, the following basic steps are
needed:

● Code coverage tools indicate how much of the code is exercised by the component test suite, and

where gaps exist that can be covered through additional component tests

● SUT functional coverage can be determined by creating a requirements traceability matrix, which

uncovers which functionality is not yet covered by any test cases

● Define a consistent infrastructure usage of the TAS across projects or the whole organization

● Develop a consistent configuration management strategy for the test suites

● Create common TAS development guidelines leveraging best practices described in the CTAL-

TAE Syllabus, section 3.1.4

● Implement preconditions. Often a test cannot be executed prior to setting preconditions. These

preconditions may include selecting the correct database or the test data from which to test or

setting initial values or parameters. Many of these initialization steps that are required to establish

a test’s preconditions can be automated. This allows for a more reliable and dependable solution

when these steps cannot be missed prior to executing the tests. As regression tests are converted

to test automation, these preconditions need to be a part of the test automation process.

When incremental TAS updates occur for new features or maintenance purposes, the following should be

considered:

● Evaluate updates to test tools or other newer test tools that can provide extended capabilities for

the TAS

● Evaluate ways in which to further optimize TAS features and performance

● Identify opportunities to further decompose and modularize test scripts to enhance reusability

● Ensure knowledge and awareness of reusable components and consistent utilization

● Collect evidence on potential improvement areas and to provide recommendations and their

benefits

● Evaluate and correct areas of functional overlap. When automating existing regression tests, it is

good practice to identify any functional overlap that exists between test cases and, where possible,

reuse previously developed test automation components.

● Evaluate additional manual test cases for opportunity to automate them and create backlog items

for implementation

● Highlight test design and test data management improvement opportunities
● Ensure all existing test suites are adapted to the latest version of the TAS

● If test automation is causing the pipeline to queue, decrease the scope of integrated tests to the

most critical ones, i.e., create a smoke test suite. The larger regression test suite can be triggered

separately or executed on demand.

Certified Tester Test Automation Strategy Specialist (CT-TAS)

 v1.0 Page 49 2024/05/03

© International Software Testing Qualifications Board

7 References

Standards
Standards for test automation include but are not limited to:

The Automatic Test Markup Language (ATML) by IEEE (Institute of Electrical and Electronics Engineers)
consisting of:

● IEEE Std 1671.1: Test Description
● IEEE Std 1671.2: Instrument Description
● IEEE Std 1671.3: UUT Description
● IEEE Std 1671.4: Test Configuration Description
● IEEE Std 1671.5: Test Adaptor Description
● IEEE Std 1671.6: Test Station Description
● IEEE Std 1641: Signal and Test Definition

• IEEE Std 1636.1: Test Results

ISO/IEC 30130:2016 (E) Software engineering — Capabilities of software testing tools

The Testing and Test Control Notation (TTCN-3) by ETSI (European Telecommunication Standards
Institute) and ITU (International Telecommunication Union) consisting of:

● ES 201 873-1: TTCN-3 Core Language
● ES 201 873-2: TTCN-3 Tabular Presentation Format (TFT)
● ES 201 873-3: TTCN-3 Graphical Presentation Format (GFT)
● ES 201 873-4: TTCN-3 Operational Semantics
● ES 201 873-5: TTCN-3 Runtime Interface (TRI)
● ES 201 873-6: TTCN-3 Control Interface (TCI)
● ES 201 873-7: Using ASN.1 with TTCN-3
● ES 201 873-8: Using IDL with TTCN-3
● ES 201 873-9: Using XML with TTCN-3
● ES 201 873-10: TTCN-3 Documentation
● ES 202 781: Extensions: Configuration and Deployment Support
● ES 202 782: Extensions: TTCN-3 Performance and Real-Time Testing
● ES 202 784: Extensions: Advanced Parameterization
● ES 202 785: Extensions: Behaviour Types
● ES 202 786: Extensions: Support of interfaces with continuous signals
● ES 202 789: Extensions: Extended TRI

The UML Testing Profile (UTP) by OMG (Object Management Group) specifying test specification
concepts for:

● Test Architecture
● Test Data
● Test Behavior
● Test Logging
● Test Management

Certified Tester Test Automation Strategy Specialist (CT-TAS)

 v1.0 Page 50 2024/05/03

© International Software Testing Qualifications Board

ISTQB® Documents
Identifier Reference

ISTQB-AL-TM ISTQB Certified Tester, Advanced Level Syllabus, Test Manager, Version 2.0,
October 2012, available from [ISTQB-Web]

ISTQB-EL-TM-MTT ISTQB Certified Tester, Expert Level Test Management Managing the Test Team,
Version 2.0, November 2011, available from [ISTQB-Web]

ISTQB-FL ISTQB Certified Tester, Foundation Level Syllabus, Version 4.0, April 2023,
available from [ISTQB-Web]

ISTQB-PT ISTQB Certified Tester, Performance Testing Syllabus, December 2018,
available from [ISTQB-Web]

ISTQB-TAE ISTQB Certified Tester, Test Automation Engineering Syllabus, February 2024,
available from [ISTQB-Web]

ISTQB-Glossary ISTQB Glossary of terms, available online from [ISTQB-Web]

Books
Paul Baker, Zhen Ru Dai, Jens Grabowski and Ina Schieferdecker, “Model-Driven Testing: Using the UML
Testing Profile”, Springer 2008 edition, ISBN-10: 3540725628, ISBN-13: 978-3540725626

Efriede Dustin, Thom Garrett, Bernie Gauf, “Implementing Automated Software Testing: how to save
time and lower costs while raising quality”, Addison-Wesley, 2009, ISBN 0-321-58051-6

Efriede Dustin, Jeff Rashka, John Paul, “Automated Software Testing: introduction, management, and
performance”, Addison-Wesley, 1999, ISBN-10: 0201432870, ISBN-13: 9780201432879

Mark Fewster, Dorothy Graham, “Experiences of Test Automation: Case Studies of Software Test
Automation”, Addison-Wesley, 2012

Mark Fewster, Dorothy Graham, “Software Test Automation: Effective use of test execution tools”, ACM
Press Books, 1999, ISBN-10: 0201331403, ISBN-13: 9780201331400

Boby Jose, “Test Automation, a manager's guide”, September 2021, ISBN: 9781780175478

James D. McCaffrey, “.NET Test Automation Recipes: A Problem-Solution Approach”, APRESS, 2006
ISBN-13:978-1-59059-663-3, ISBN-10:1-59059-663-3

Daniel J. Mosley, Bruce A. Posey, “Just Enough Software Test Automation”, Prentice Hall, 2002, ISBN-
10: 0130084689, ISBN-13: 9780130084682

Casey Rosenthal, “Chaos Engineering: System Resiliency in Practice by Casey Rosenthal”, April 2020,
ISBN-13: 1492043869

Colin Willcock, Thomas Deiß, Stephan Tobies and Stefan Keil, “An Introduction to TTCN-3” Wiley, 2nd
edition 2011, ISBN-10: 0470663065, ISBN-13: 978-0470663066

Certified Tester Test Automation Strategy Specialist (CT-TAS)

 v1.0 Page 51 2024/05/03

© International Software Testing Qualifications Board

Articles
Robert V. Binder, Suzanne Miller, “Five Keys to Effective Agile Test Automation for Government
Programs” August 24, 2017, Software Engineering Institute, Carnegie Mellon University,
https://resources.sei.cmu.edu/asset_files/Webinar/2017_018_101_503516.pdf

DoD CIO, Modern Software Practices “DevSecOps Fundamentals Guidebook: Activities & Tools”,
Version 2.2, May 2023,
https://dodcio.defense.gov/Portals/0/Documents/Library/DevSecOpsActivitesToolsGuidebookTables.pd
f?ver=_Sylg1WJB9K0Jxb2XTvzDQ%3d%3d

Naveen Jayachandran, “Understanding roi metrics for software test automation”, 2005,
https://digitalcommons.usf.edu/cgi/viewcontent.cgi?article=3937&context=etd

Thomas Pestak, William Rowell, PhD, “Automated Software Testing Practices and Pitfalls”, September
2018,
https://www.afit.edu/stat/statcoe_files/Automated%20Software%20Testing%20Practices%20and%20Pi
tfalls%20Rev%201.pdf

Andrew Pollner, Jim Simpson, Jim Wisnowski, “Automated Software Testing Implementation Guide for
Managers and Practitioners”, October 2018,
https://www.afit.edu/stat/statcoe_files/0214simp%202%20AST%20IG%20for%20Managers%20and%2
0Practitioners.pdf

Certified Tester Test Automation Strategy Specialist (CT-TAS)

 v1.0 Page 52 2024/05/03

© International Software Testing Qualifications Board

8 Appendix A – Learning Objectives/Cognitive Level of
Knowledge

The following learning objectives are defined as applying to this syllabus. Each topic in the syllabus will
be examined according to the learning objective for it.

The learning objectives begin with an action verb corresponding to its cognitive level of knowledge as
listed below.

Level 2: Understand (K2)
The candidate can select the reasons or explanations for statements related to the topic, and can
summarize, compare, classify, and give examples for the testing concept.

Action verbs: Classify, compare, differentiate, distinguish, explain, give examples, interpret, summarize

Examples Notes

Classify test tools according to their purpose and the
test activities they support.

Compare the different test levels.

Can be used to look for similarities, differences,
or both.

Differentiate testing from debugging. Looks for differences between concepts.

Distinguish between project and product risks. Allows two (or more) concepts to be separately
classified.

Explain the impact of context on the test process.

Give examples of why testing is necessary.

Infer the root cause of defects from a given profile of
failures.

Summarize the activities of the work product review
process.

Certified Tester Test Automation Strategy Specialist (CT-TAS)

 v1.0 Page 53 2024/05/03

© International Software Testing Qualifications Board

Level 3: Apply (K3)
The candidate can carry out a procedure when confronted with a familiar task or select the correct
procedure and apply it to a given context.

Action verbs: Apply, implement, prepare, use

Examples Notes

Apply boundary value analysis to derive test cases
from given requirements.

Should refer to a procedure / technique / process
etc.

Implement metrics collection methods to support
technical and management requirements.

Prepare test automation environment.

Use traceability to monitor test progress for
completeness and consistency with the test
objectives, test strategy, and test plan.

Could be used in a LO that wants the candidate
to be able to use a technique or procedure.
Similar to 'apply'.

Reference

(For the cognitive levels of learning objectives)

Anderson, L. W. and Krathwohl, D. R. (eds) (2001) A Taxonomy for Learning, Teaching, and

Assessing: A Revision of Bloom's Taxonomy of Educational Objectives, Allyn & Bacon

Certified Tester Test Automation Strategy Specialist (CT-TAS)

v1.0 Page 54 2024/05/03

© International Software Testing Qualifications Board

9 Appendix B – Business Outcomes traceability matrix with Learning Objectives

This section lists the traceability between Test Automation Strategy Specialist Business Outcomes and Test Automation Strategy Specialist
Learning Objectives.

Business Outcomes Test Automation Strategy Specialist
B
0
1

B
0
2

B
0
3

B
0
4

B
0
5

B
0
6

B
0
7

B
0
8

B
0
9

B
1
0

B
1
1

B
1
2

B
1
3

B
1
4

B
1
5

Chapter
1

Introduction and Objectives for Test Automation Strategy

1.1 Success Factors of a Test Automation Project

1.1.1 Explain the Objectives and Relevance of Test
Automation

2
X

1.1.2 Identify Technical Success Factors of a Test
Automation Project

2
X

1.1.3 Summarize Appropriate Investment Criteria in Selecting
Candidate Projects for Test Automation

2
X

Chapter
2

Test Automation Resources

2.1 Costs and Risks of Implementing a Test Automation Solution

2.1.1 Compare Alternative Technical Solutions with Regard to
Cost of Ownership

2
 X

2.1.2 Explain Licensing Model Considerations for Test
Automation Tools

2
 X

2.1.3 Provide Examples of Factors to be Considered When
Defining a Test Automation Strategy

2
 X

2.2 Roles and Responsibilities within Test Automation

2.2.1 Summarize the Roles and Skills Necessary for a
Successful Test Automation Solution

2
 X

Certified Tester Test Automation Strategy Specialist (CT-TAS)

v1.0 Page 55 2024/05/03

© International Software Testing Qualifications Board

Business Outcomes Test Automation Strategy Specialist
B
0
1

B
0
2

B
0
3

B
0
4

B
0
5

B
0
6

B
0
7

B
0
8

B
0
9

B
1
0

B
1
1

B
1
2

B
1
3

B
1
4

B
1
5

Chapter
3

Preparing for Test Automation

3.1 Integration Across Test Levels

3.1.1 Differentiate Between Test Automation Distributions 2
 X

3.1.2 Select a Test Automation Approach Based on the
System Under Test Architecture

3
X

3.1.3 Demonstrate Ways to Optimize Test Automation
Distribution to Achieve Shift Left and Shift Right
Approaches

2
X

3.2 Strategic Considerations in Different Software Development
Lifecycle Models

3.2.1 Explain how test automation projects conform with
legacy software development lifecycle models

2
 X

3.2.2 Explain How Test Automation Projects Conform with
Agile Software Development Best Practices that Support
Test Automation

2
 X

3.2.3 Prepare for Test Automation Projects to Conform with
DevOps Best Practices that Support Test Automation in
Continuous Testing

3
 X

3.3 Applicability and Viability of Test Automation

3.3.1 Explain Criteria for Determining the Suitability of Tests
for Test Automation

2
 X

3.3.2 Identify Challenges that Only Test Automation can
Address

2
 X

3.3.3 Identify Test Conditions that are Difficult to Automate 2
 X

Certified Tester Test Automation Strategy Specialist (CT-TAS)

v1.0 Page 56 2024/05/03

© International Software Testing Qualifications Board

Business Outcomes Test Automation Strategy Specialist
B
0
1

B
0
2

B
0
3

B
0
4

B
0
5

B
0
6

B
0
7

B
0
8

B
0
9

B
1
0

B
1
1

B
1
2

B
1
3

B
1
4

B
1
5

Chapter
4

Organizational Deployment and Release Strategies for Test
Automation

4.1 Test Automation Solution Planning

4.1.1 Identify ways how Test Automation supports shorter time
to market

2
 X

4.1.2 Identify Ways in Which Test Automation Helps Verify
Reported Defects According to Requirements

2
 X

4.1.3 Define Approaches that Allow for the Development of
Operationally Relevant Scenarios for Test Automation

2 X

4.2 Deployment Strategies

4.2.1 Define a Test Automation Deployment Strategy 2 X

4.2.2 Identify Test Automation Risks in Deployment 2 X

4.2.3 Define Approaches To Mitigate Deployment Risks 2 X

4.3 Dependencies within the Test Environment

4.3.1 Define Test Automation Components in the Test
Environment

2 X

4.3.2 Identify Infrastructure Components and Dependencies of
Test Automation

2 X

4.3.3 Define Test Automation Data and Interface
Requirements for Integration within the System Under
Test

2 X

Chapter
5

Test Automation Impact Analysis

5.1 Investment in Setting Up and Maintaining Test Automation

Certified Tester Test Automation Strategy Specialist (CT-TAS)

v1.0 Page 57 2024/05/03

© International Software Testing Qualifications Board

Business Outcomes Test Automation Strategy Specialist
B
0
1

B
0
2

B
0
3

B
0
4

B
0
5

B
0
6

B
0
7

B
0
8

B
0
9

B
1
0

B
1
1

B
1
2

B
1
3

B
1
4

B
1
5

5.1.1 Show Return On Investment of Building a Test
Automation Solution

3 X

5.2 Test Automation Metrics

5.2.1 Classify Metrics for Test Automation 2 X

5.3 The Value of Test Automation on the Project and Organization
Level

5.3.1 Identify Organizational Considerations for Use of Test
Automation

3 X

5.3.2 Analyze Project Characteristics that Help Determine
Optimal Implementation of Test Automation Test
Objectives

3 X

5.4 Decisions Made from Test Automation Reports

5.4.1 Analyze Test Report Data to Inform Decision Making 2 X

Chapter
6

Implementation and Improvement Strategies for Test
Automation

6.1 Transitioning Activities from Manual Testing to Continuous
Testing

6.1.1 Describe the Factors and Planning Activities in
Transitioning from Manual Testing to Test Automation

2 X

6.1.2 Describe the Factors and Planning Activities in
Transitioning from Test Automation to Continuous
Testing

2 X

6.2 Test Automation Strategy Across the Organization

6.2.1 Conduct an Evaluation of the Test Automation Assets
and Practices to Identify Improvement Areas

3 X

Certified Tester Test Automation Strategy Specialist (CT-TAS)

v1.0 Page 58 2024/05/03

© International Software Testing Qualifications Board

10 Appendix C – Release
Notes

ISTQB® Test Automation Strategy Syllabus 2024 is a new ISTQB syllabus that combines strategic
aspects from the prior ISTQB Test Automation Engineer syllabus release from 2016 with additional
updates and current best practices for implementing and measuring success of test automation. For this
reason, there are no detailed release notes per chapter and section.

Certified Tester Test Automation Strategy Specialist (CT-TAS)

v1.0 Page 59 2024/05/03

© International Software Testing Qualifications Board

11 Appendix D – Domain-
Specific Terms

Term Name Definition

canary release A deployment and testing strategy meant to reduce risk and verify new software
by releasing software to only a few users.

container A unit of software that packages code and its dependencies, so the software
runs quickly and reliably across environments.

DevOps A methodology that integrates and automates the work of software development
and IT operations to improve and shorten the software development lifecycle.

flow model pattern A high-level view of the work domain, its components, and interconnections
among them.

Certified Tester Test Automation Strategy Specialist (CT-TAS)

v1.0 Page 60 2024/05/03

© International Software Testing Qualifications Board

12 Index

All terms are defined in the ISTQB® Glossary (http://glossary.istqb.org/).

API testing, 22, 23, 24

canary release, 25, 59

component, 22, 23, 24, 25, 26, 29, 30, 40, 45,
48

component testing, 22, 23, 25

confirmation testing, 29, 30

container, 34, 35, 59

contract testing, 22, 23, 24, 25, 36

coverage, 16, 21, 24, 25, 27, 37, 40, 43, 44,
46, 48

design pattern, 59

DevOps, 22, 26, 55, 59

flow model pattern, 45, 59

precondition, 44, 46

quality gate, 29, 30

shift left, 22, 25, 30, 43

shift right, 22, 25, 43

system under test, 22, 29

TAE, 15, 16, 17, 18, 19, 21, 26, 31, 32, 33,
35, 36, 38, 43, 45, 48

TAF, 15, 17, 26, 32, 35, 43

TAS, 15, 17, 18, 19, 20, 21, 22, 23, 25, 29,
32, 33, 34, 35, 37, 39, 40, 41, 42, 43, 44,
45, 47, 48

test automation approach, 22

test automation solution, 17, 18, 37

test condition, 22

test double, 22

test level, 22, 23, 39

test pyramid, 22, 39

test report, 37, 43

test suite, 27, 30, 31, 34, 44, 45, 48

http://glossary.istqb.org/

